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SOLVE THE INCOMPRESSIBLE NAVIER-STOKES 
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SUMMARY 

In this paper, a segregated finite element scheme for the solution of the incompressible Navier-Stokes 
equations is proposed which is simpler in form than previously reported formulations. A pressure correction 
equation is derived from the momentum and continuity equations, and equal-order interpolation is used for 
both the velocity components and pressure. Algorithms such as this have been known to lead to 
checkerboard pressure oscillations; however, the pressure correction equation of this scheme should not 
produce these oscillations. The method is applied to  several laminar flow situations, and details of the 
methods used to  achieve converged solutions are given. 
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INTRODUCTION 

As the use of computational fluid dynamics grows, so the complexity of the simulations increases. 
One aspect of this increasing complexity is the modelling of flows in very complicated geometries. 
Here complex geometries are taken to be those where not only do  the bounding surfaces of the 
flow have complex curvature, but also where the computational mesh required to describe the 
volume of fluid cannot have a regular structure or connectivity. 

Today, two main numerical techniques are used to discretize the governing equations; finite 
volume (or difference) methods and finite element methods. Traditionally, finite volume techni- 
ques have demanded the use of a body-fitted mesh with a regular topology. These meshes are 
formed from a topological cuboid of elements, which can be stretched to fit any surface provided 
that the topological structure of the mesh is maintained. Consequently, with the original finite 
volume schemes, some complex geometrical shapes can be meshed but others can not. 

When the finite element method is used, the formulation of the equations imposes no restriction 
on the mesh topology, and so flows in complex geometries, where an irregular mesh topology is 
required, can be simulated. When solving fluid flow problems, finite element methods have not 
been as popular as finite volume methods, since the original finite element solution schemes were 
computationally much more expensive to run.' Two main reasons can be cited for this: the 
difficulty in proceeding with the calculation because the momentum and continuity equations do 
not yield the pressure in a straightforward way, and the use of direct solvers to obtain the solution 
of a set of simultaneous linear equations. 

Finite volume algorithms2 solve a pressure correction equation which is based on the continuity 
equation, whereas the earlier finite element algorithms solved for the velocities and pressure in a 
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coupled way. This coupled scheme leads to a larger set of linear equations having to be solved, and 
so the solution time is correspondingly longer, and if a direct solver is used instead of an iterative 
one, the solution time is increased further. 

Recently, finite volume schemes have become available that can handle irregular mesh 
top~logies ,~ and finite element schemes have been reported4r5 that use a segregated approach 
based on a pressure correction equation. This paper describes the development of such a 
segregated finite element scheme, which is simpler in its formulation than previous ones, and 
details both the computational aspects of the implementation as well as the practical numerical 
aspects of obtaining converged solutions. Results are given for several laminar flow cases. 

SEGREGATED FINITE ELEMENT SOLUTION SCHEMES 

The basic equations 

For steady, incompressible, viscous flow in two dimensions the momentum equations are 

ap a ( ;:) :y( i;) au au 
ax ay ax ax p u - + p v - = - - + -  p- +- p- , 

p u - + p v - = - - + -  av av 
aP a ( p- ;;) +- ;y( p- ;;) , ax ay ay ax 

where u and v are the velocity components in the x- and y-directions respectively, p is the pressure, 
p is the fluid density and p is the fluid viscosity. The continuity equation is given by 

au av 
ax a y  
-+-=o. 

An equation for the pressure can be derived by differentiating equations (1) by x and y respectively 
and then applying (2) to give 

Review of previous algorithms 

The momentum equations (1) contain three unknowns-the two velocity components and the 
pressure-whereas the continuity equation (2) contains only the velocity components. It is clear 
that there are three equations for three unknowns, but the form of equation (2) precludes a 
solution for the velocity components and so they must be found from equations (1). To calculate 
the pressure, early finite element algorithms solved for the velocity components and pressure 
together, i.e. solving all three equations simultaneously.’ This scheme is successful only if the 
interpolations used for the variables satisfy the Babuska-Brezzi conditions described by Zienkie- 
wicz and Taylor.6 As was said in the introduction, the simultaneous solution of the momentum 
and continuity equations leads to an inefficient algorithm, but the penalty method’ can reduce the 
inefficiency by solving for the velocity components together and then finding the pressure from a 
Lagrange multiplier and the velocity components. 

Finite volume techniques use a segregated solution scheme for these equations, where the 
velocity components are found from equation (1) and then pressure and velocity corrections are 
found to enforce equation (2). Each updated value is found from 

u = u* + u’, v =  v* + u’, P = P* + P’, (4) 
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where the starred values satisfy the momentum equations (1) and the primed values are the 
correction values used to enforce continuity. This scheme is commonly known as the SIMPLE 
algorithm.2 

If the finite element and finite volume techniques are seen purely as complementary methods of 
solving partial differential equations, then there is no reason for a SIMPLE-like finite element 
scheme to be unsuccessful. An early velocity correction procedure has been described by Schneider 
and Raithby,' which solves equations (1 )  for the two velocity components and then finds 
correction values by ensuring that equation (2) is satisfied. This is done by assuming that the 
corrections are the gradient of a scalar potential. Equation (3) can then be used to find the pressure 
directly; however, this equation demands the values of the pressure gradients at the boundaries of 
the domain, and these can only be found from equations (1) if second-order elements are used for 
the velocity components. 

Recently, two truly SIMPLE-like finite element schemes have been published, which solve 
equations (1) first and then solve a pressure correction form of the continuity equation to find 
velocity corrections and a pressure or pressure correction to ensure that continuity is satisfied. 
Rice and Schnipke4 use first-order elements for the velocity components and pressure, solving for 
pressure using boundary conditions which contain terms containing mass flux. Benim and Zinser' 
calculate the pressure correction variable and use a bilinear velocity-constant pressure element or 
a composite nine-noded element. This composite element removes the checkerboard modes found 
with the simpler element. 

Current solution scheme 

Ideas from the two segregated finite element schemes mentioned above have been used to 

Each variable, say 4, is described by a local polynomial on an element which links 4 to the 
produce a simpler formulation which uses bilinear elements for both velocity and pressure. 

values at  the nodes; that is, 

where Ni is a polynomial trial function and n is the number of nodes on the element. 
Equations ( 1 )  are discretized using the standard Galerkin technique, premultiplying the 

equation by the test function and integrating over the domain. For example, the x-momentum 
equation for each element becomes 

where R signifies the domain under investigation, whose foundary will be denoted by r. 
Integrating by parts and substituting for the discrete form of the velocities, the discretized forms of 
equations (1) on each element are 
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where n, and ny are the components of the unit vector normal to the boundaries in the outward 
direction. 

The boundary terms in equations (7) and (8) can usually be ignored, since either the velocity is 
given on the boundary or the flux is zero. Equations (7) and (8) can be rewritten in matrix form for 
an element as 

Auj=Bpj, Auj = Cp,, (9) 
where matrix A is a function of local velocities, being the sum of a discrete convection operator and 
a discrete Laplace operator. If the velocity and pressure are assumed to have the form given in 
equation (4), then 

Since the solution of equation (7) is found to be 
A(uj*+ui)=B(pj*+p)). (10) 

A UT = Bpj* , (1 1) 

Au! J J  = Bp!; (12) 

u'. = A -  BP;, v' .=A-'CpJ.  (13) 

then from equation (10) 

hence the nodal values of u' and u' may be described as 

The matrix A can be described as the sum of a matrix D which contains the diagonal terms of A 
and a matrix F which contains the off-diagonal terms. Hence equations (13) can be further 
simplified by ignoring the off-diagonal terms to give 

u! = D- Bp: J' 0'. = D - CpJ. (14) 
This simplification for the matrix A can be made because the pressure correction term approaches 
zero as the solution converges. Other simplifications could also be made, but taking the diagonal 
is the simplest choice. 

Once p' has been found, u' and u' have to be found at each node. Equations (14) are valid for 
each element and so they have to be integrated over the domain: 

NiNj us dR = 

r r 

N i N j  D- I BpJ dSZ, 

N i  N j  0; dR= N i N j  D -  CpsdR. 
Jn Jn 

It should be noted that this procedure described by equations (15) and (16) can be simplified to 
avoid the inversion of the full mass matrix on the left-hand side by mass lumping. 

Now the continuity equation must be discretized to form a pressure correction equation. This is 
done using the standard Galerkin technique on equation ( 2 )  to give 

jn N i ( g + E ) d R = O ,  

which becomes 

when the velocity components are split using equation (4). 
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Integrating the left-hand side by parts gives 

-In;Y"ju;dfi- Ni(u'n,+v'n,)dT= - au* av* 
ax 

Here the third term on the left-hand side is a boundary term containing the correction velocities. 
In many problems the velocity will be specified at the boundaries and so the correction velocities 
at those boundaries will be zero. Equally, the pressure may be specified and so its correction values 
will also be zero. Consequently the boundary integral can be ignored in many problems. 
Substituting equation (14) into equation (19) gives 

which is the desired pressure correction equation. It is this equation which differs from those of 
Rice and Schnipke4 and Benim and Z i n ~ e r , ~  being of a much simpler form. This last equation can 
also be written 

(BTD- B + CTD-'C)pJ = 6*, (21) 

where 6* accounts for the right-hand side of equation (20), the mass source due to the velocities 
calculated using the momentum equations. If the entries in matrix D are positive, then the 
coefficient matrix on the left-hand side of equation (21) will be symmetric and positive definite. 

COMPUTATIONAL ASPECTS O F  THE SCHEME 

Programming the algorithm 

One aim of this work has been to investigate the way in which a segregated finite element 
solution scheme works in practice. To do this, the above two-dimensional scheme has been 
implemented using only four-noded quadrilateral elements. The program has been written as a 
testbed for the algorithm, ignoring considerations of computational efficiency at  this stage. As a 
result, all the solutions to equations (7), (8), (20), (15) and (16) are carried out with direct solvers. 

The algorithm consists of the following stages. 

(a) Find u* from equation (7). 
(b) Find v* from equation (8). 
(c) Find p' from equation (20). 
(d) Find u' from equation (15). 
(e) Find v' from equation (16). 
(f) Form u, u and p from equation (4). 
(g) Loop back to (a) if there are more iterations to perform, else stop. 

Initial conditions 

All of the problems have been calculated with the initial values of the variables set to zero at all 
nodes, except at those nodes where boundary conditions are specified. At these nodes the fixed 
boundary value is enforced for all the iterations. 
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Achieving convergence 

As with most non-linear problems, some form of relaxation is required to enable a converged 
solution to be obtained. Standard linear relaxation can be applied to the variables u* and v* as 
follows: 

4 = L Y 4 n e w  + (l - a ) 4 0 , d ,  (22) 
where 4 is the relaxed value of either u* or v* that will be carried forward in the calculation, 4,,, is 
the value of u* or v* calculated from the momentum equation (7) or (8). d o l d  is the previous value of 
u* or u*, and LY is the relaxation factor (where O d  LY d 1). Similarly, the updated values of u, v and p 
are formed by modifying equation (4) to be 

4 = 4* + bP’, (23) 
where 4 is any of the three variables and p is a relaxation factor (O<bd 1). 

These two equations, (22) and (23), are used to control the values of the variables and so prevent 
the solution process diverging. Two main sources of divergence have been noted during the 
iterative process. First, it has been found that the pressure correction is usually too great and so 
equation (23) has to be employed when forming the updated pressure. Secondly, enforcing 
continuity can also lead to divergence. The velocities u’ and v’ should not normally be relaxed 
using equation (23), since such relaxation would mean that continuity is not satisfied. In some 
problems, however, the application of correction velocities without relaxation has led to wiggles in 
the velocity field near a wall boundary in the first few steps of the solution. If this occurs, a heavy 
relaxation has been applied for several steps to all three correction variables, u’, 0’ and p’ ,  allowing 
the momentum equations to modify the velocity profiles near any walls in a smooth manner. 

Upwinding 

If the local cell Reynolds number is too large, the solution of the momentum equations (7) and 
(8) is convection-dominated. This can lead to wiggles in the velocity field and prevent convergence 
of the iterative scheme.’ Where necessary, the convection terms in equations (7) and (8) have been 
modified to provide upwinding using the quadrature upwinding scheme of Hughes.” This scheme 
has been chosen because it is perhaps the simplest to adopt even though it is numerically diffuse. 
The scheme presented by Brooks and Hughes’ is only slightly more difficult to adopt but contains 
much less cross-wind diffusion. 

Stability 

As has been stated, this algorithm has been implemented using equal-order interpolation for the 
velocity components and pressure. Such schemes are regarded as violating the Babuska-Brezzi 
conditions and as leading to oscillations in the pressure solution. 

A readable account of the Babuska-Brezzi conditions is given by Zienkiewicz and Taylor in 
Chapter 12 of their book.6 There are two conditions: the first refers to the coupled solution of the 
variables and states that the matrix operating on the pressure variables must be non-singular, 
whilst the second states that the divergence operator on the pressure must not have any null states 
when the pressure is not zero throughout the domain. The first condition is met when the number 
of unknown nodal values of velocity is greater than the number of unknown nodal values of 
pressure. The second condition ensures that only realistic modes of pressure are present in the 
solution. One example of this is a checkerboard mode which can exist when bilinear interpolation 
is used for the pressure, since the divergence operator on pressure cannot detect such a mode and 
consequently these modes do not affect the momentum equations. 
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Finite volume algorithms can overcome these problems in several ways. Many algorithms use a 
staggered grid for the velocity components and the pressure. Others modify the pressure terms in 
the momentum equations or the continuity equation. For example, the Rhie and Chow 
algorithm'' allows the velocity components and the pressure to be stored at the cell centres, and 
interpolates the velocities from this position to the faces of the cells, as shown by Burns and 
Wilkes. l 2  

Finite element algorithms can also produce pressure oscillations if the two Babuska-Brezzi 
conditions are not met. For the segregated finite element solution the first condition can be dealt 
with quite simply. Equation (21) is the matrix form of the discrete continuity equation, and the 
matrix that has to be inverted to find p' is on the left-hand side. Since the solution scheme is 
decoupled, this matrix will not be singular. If the scheme is coupled, this might not be the case, and 
the first Babuska-Brezzi condition states the requirements for the matrix not to be singular. 

The investigation of the second condition, which refers to the admission of spurious pressure 
modes, is more difficult, since the divergence operator on the pressure variable in the discretized 
momentum equations (7) and (8) will not detect several unrealistic modes of pressure. These 
unrealistic modes of pressure must be generated from the pressure correction equation (20), and so 
this has been investigated further. For the simple laminar flow between parallel plates, on a mesh 
of square elements, the left-hand-side element equations have been calculated and assembled. 
Hence the resulting computational molecule used to calculate the values of the pressure correction 
has been found and is shown in Figure 1. From this, the value of the pressure correction at  the 
centre node can be seen to depend on the values at each of its eight nearest neighbours, there being 
no zeros in the molecule, and so there is no decoupling of any of the pressure correction nodal 
values. 

Looking at equation (20), each of the two components of the left-hand side is formed from the 
multiplication of two square matrices. This can be rearranged such that the diagonal terms of 
matrix D are placed on the right-hand side, and then it is easily demonstrated that the resulting 
left-hand-side matrix for the pressure correction is proportional to the matrix that would have 
been formed had the left-hand side been the Laplace operator. 

Since the pressure correction values are formed from a Laplacian-like operator, the solutions 
for pressure will be smooth and the oscillatory modes never formed. Consequently the fact that the 
momentum equations are insensitive to spurious pressure modes does not cause concern. 

Figure 1 .  Computational molecule for the pressure correction equation 
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SOME SOLUTIONS FOR LAMINAR FLOWS 

Flow under constant pressure gradient 

The simplest flow that has been calculated is a unidirectional flow driven by a constant pressure 
gradient. Because the velocity profile is parabolic in the y-direction, the pressure gradient can be 
calculated from the x-momentum equation (1).  This flow is defined by 

u= l.O(y-yZ), a p p x  = - 2 . 0 ~  (24) 
for the domain 0 d x d 1.0,O < y d 0.4 and has been calculated using eight rectangular elements, for 
which 6x=O.5, 6y=O1. The velocities have been specified on all boundaries except the outlet, 
where the pressure has been set to zero. Two hundred iterations have been run with no upwinding 
for a flow with unit viscosity and density. The relaxation parameters have been set to c( = 0.9 for u* 
and u*, f i  =0.1 for p’ and f i =  1.0 for u’ and u‘. 

Figure 2 shows the variation of the pressure at the inlet wall node and the average nodal value of 
p’ with iteration number. In this figure the inlet wall node has been chosen because it is the least 
accurate of the five nodes at the inlet. Even so, the pressure can be seen to converge to a value close 
to the expected value of 2.0, and the average value of the pressure correction can be seen to fall 
rapidly as the solution progresses. 

To assess the accuracy of the method, Table I shows the values of maximum error at any node 
for both u and p against iteration number. From this it can be seen that the error in the u-velocity is 
much smaller than the error in the pressure and that the error in the pressure is above 2%, even 
after 200 iterations. Further calculations have also been made with all the relaxation factors set to 
unity except for the factor f i  on pressure. By calculating the accuracy of the nodal pressures after 
each iteration, the calculation has been stopped when the maximum error is below a certain value. 
Table I1 contains the results of this exercise. It can be seen that higher relaxation factors can be 
used on the pressure, to achieve more economical results, and that even small values of 
overrelaxation can be used. One main feature here is the large number of iterations required to 
reduce the error from 3% to 2%, showing that the convergence rate becomes extremely slow as 

p - pressure a t  inlet node 

p’-average nodal pressure correction PA 

2.0 - 
P 

1.0 - 

I I I 

0 50 100 150 200 step 

Figure 2. Pressure history for a flow with constant pressure gradient 
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Table I .  Errors at a series of iterations 

Maximum error Maximum error 
Iteration number in u (YO) in p (YO) 

40 I .44 5.80 
80 0.34 3.58 

120 0.1 1 3.04 
160 0.07 2.83 
200 0.05 2.67 

Table 11. Iterations to achieve a given minimum error 

Iterations 
Relaxation factor for error 
on pressure 5 Yo 

Iterations Iterations Iterations 
for error for error for error 

4 Yo 3 Yo 2 Yo 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1.1 
1.2 

46 
23 
15 
11 
9 
7 
6 
5 
6 
I 

12 
21 

63 
31 
20 
15 
12 
10 
8 
7 
7 
9 

13 
34 

115 
57 
38 
28 
22 
18 
16 
13 
12 
9 

15 
39 

505 
253 
169 
127 
101 
84 
72 
63 
56 
51 
46 
47 

the error is reduced. To achieve 1% error, 129 iterations are required for a relaxation factor jl 
= 1.1. In fact, with a factor b= 1-2 the solution eventually diverges, as it always does with a factor b 
= 1.3. 

This slow convergence may be due to the use of the diagonal to approximate matrix A. Other 
approximations could be made, and this will be the subject of further research. 

Driven cavity flow 

A truly two-dimensional flow has been calculated; the flow in a square cavity which is driven by 
a moving lid. Here the upper side of the square is given a fixed uniform velocity in the horizontal 
direction, and the velocity on the other boundaries is set to zero. In this case the pressure is set to 
zero at one point on the boundary to anchor its value. This forms a suitable numerical experiment 
since Burggraf l 3  has provided very accurate numerical solutions using a stream- 
function-vorticity formulation solved on a very fine grid. 

At a Reynolds number of 100, based on the lid velocity and cavity width, upwinding is not 
required to solve this problem on a mesh of 16 x 16 elements. It should be noted that the mesh is 
biased towards all the solid boundaries. Obtaining convergence for this problem is more difficult 
than for the previous problem. With relaxation factors c i  = 1.0 for u* and u* and b= 1.0 for u' and 
u' ,  the relaxation factor for pressure must be set to a small value such as p=O.l. Even then the 
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convergence is not smooth. In fact, setting c1=0.5 for u* and v* improves the convergence rate and 
so a trade-off in relaxation factors is necessary. Smooth convergence can also be achieved for 
many other combinations of relaxation factor provided that the higher the value of B for pressure, 
the lower is the value of a for u* and u*. One such combination is B=0.4 and a =0.1. Two hundred 
iterations have been run for this combination, and Figure 3 shows the variation of u-velocity with 
height on the vertical centreline of the cavity for a Reynolds number of 100. 

Looking at Figure 3, the finite element solution is plotted at 10, 20, 50 and 100 iterations, 
together with sample points from the Burggraf ~o lu t ion . ’~  At 200 iterations the results are 
indistinguishable from those at 100 iterations to the scale of the figure. Clearly the comparison is 
good at 100 iterations, but even at 50 iterations the finite element predictions are not too far from 
the Burggraf results. 

Flow over a back step 

When calculating two-dimensional flows, the classic problem involving separation is the flow 
over a backward-facing step. Denham and Patrick14 have performed a detailed series of 
experiments on this flow at various Reynolds numbers for a step height of 15 mm, which is one- 
half of the inlet height. 

The mesh for this problem contains some 600 elements and extends six step heights upstream of 
the step and 44 step heights downstream. A fully developed parabolic velocity profile has been 
given at  the inlet, and the velocities have been set to zero on the walls. The outlet pressure has been 
specified as zero. 

To run this test case, five iterations have been calculated with relaxation factors p =0.01 on p’ ,  CI 

=0.9 on u* and v* and f i=O.Ol  on u’ and v’. This allows the velocity field to be smooth, 
eliminating any wiggles at the walls. Then 20 further iterations have been run with relaxation 
factors /?=O.l on p’ ,  a=O.5 on u* and v* and f i =  1.0 on u‘ and u’ to enforce continuity. The 
separation lengths have been measured after the first 15 iterations and then after 25 iterations. The 
difference in the length between the two is about 1 YO. Over the 25 iterations the average pressure 
correction has reduced by a factor of the order of 0.0001. 

Y’Ymax I 

-0-2 
I 

Figure 3. Centreline velocity profiles for a driven cavity flow 
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6 -  

5 -  

4 -  

For flows at Reynolds numbers (based on step height) of 12.5 and 25, convergence has been 
achieved without upwinding. However, at Reynolds numbers of 50 and above, upwinding is 
required to prevent the iterative scheme diverging. In Figure 4 the comparison of the computed 
separation length with the experimental values for the lower-Reynolds-number cases is given, and 
Figure 5 shows the velocity profile at  one downstream station for a Reynolds number of 73. 

Predictions of separation length are reasonable, both with and without upwinding. The error 
for the case of Reynolds number 100 is probably due to the increasing coarseness of the mesh 

1 2 l  + 

0 
0 

0 X 

9 
0 

X 
0 

+ x - calculation with upwinding 

+-  calculation without upwinding 

0-  experiment 

Figure 4. Variation of separation length behind the step with Reynolds number 

x - experiment 

- calculated 

-0-2 01 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 "/u 

Figure 5. Velocity profile 12 mm downstream of the step 
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downstream of the step to save on computer storage. At 12 mm downstream of the step the 
prediction of the velocity component u is very good, as shown in Figure 5, with the reversed flow 
area being predicted accurately. 

CONCLUSIONS 

From the results presented here, it is clear that a segregated finite element solution scheme with 
equal-order interpolation for the velocity components and the pressure can be used. With the 
pressure correction derived here, checkerboard solutions for pressure should not occur. 

If such schemes are to make an impact on the solution of real-life engineering problems, then 
much more work needs to be done. In particular, the efficiency of the solution scheme needs to be 
improved by using iterative linear equation solvers and perhaps modifying the approximations in 
the pressure correction equation, some form of turbulence model needs to be implemented and the 
scheme needs to be rewritten for three-dimensional time-dependent flows. 
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